Friday, February 1, 2008

Electronic Contact Lens!!

Electronic Contact Lens promises bionic capabilities for everyone!



“These are lens that are exactly the right size, but they have never been incorporated into a contact lens so what’s really encouraging is that a lot of these things exists and one of our hopes is that we have opened the venue of the contact lens to microelectronics – people thinking about contact lenses as a place where we can put elecronics and optoelectronics.”

Building the lenses was a challenge because materials that are safe for use in the body, such as the flexible organic materials used in contact lenses, are delicate. Manufacturing electrical circuits, however, involves inorganic materials, scorching temperatures and toxic chemicals. Researchers built the circuits from layers of metal only a few nanometers thick, about one thousandth the width of a human hair, and constructed light-emitting diodes one third of a millimeter across. They then sprinkled the grayish powder of electrical components onto a sheet of flexible plastic. The shape of each tiny component dictates which piece it can attach to, a microfabrication technique known as self-assembly. Capillary forces – the same type of forces that make water move up a plant's roots, and that cause the edge of a glass of water to curve upward – pull the pieces into position.

The prototype contact lens does not correct the wearer's vision, but the technique could be used on a corrective lens, Parviz said. And all the gadgetry won't obstruct a person's view. Ideally, installing or removing the bionic eye would be as easy as popping a contact lens in or out, and once installed the wearer would barely know the gadget was there, Parviz said.

"There is a large area outside of the transparent part of the eye that we can use for placing instrumentation," Parviz said. Future improvements will add wireless communication to and from the lens. The researchers hope to power the whole system using a combination of radio-frequency power and solar cells placed on the lens, Parviz said.

The results of the project to date were presented last week at the Institute of Electrical and Electronics Engineers' international conference on Micro Electro Mechanical Systems by Harvey Ho, a former graduate student of Parviz's now working at Sandia National Laboratories in Livermore, Calif. Other co-authors were Ehsan Saeedi and Samuel Kim in the UW's electrical engineering department and Tueng Shen in the UW Medical Center's ophthalmology department.

No comments: